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The huge spin precession frequency observed in recent experiments with spin-polarized
beams of hot electrons shot through magnetized films is interpreted as being caused by
Zeeman coupling of the electron spins to the so-called Weiss exchange field in the film.
The microscopic origin of exchange interactions and of large mean exchange fields,
leading to different types of magnetic order, is elucidated. A microscopic derivation of
the equations of motion of the Weiss exchange field is presented. Novel proofs of the
existence of phase transitions in quantum XY -models and antiferromagnets, based on
an analysis of the statistical distribution of the exchange field, are presented.

KEY WORDS: Magnetism, ferromagnetism, Weissfield, magneticσ -model, mean-
field theory, tight-binding models, reflection positivity, infrared bounds.

1. INTRODUCTION

Effects of ferromagnetism have been known since antiquity. But a mathematical
understanding of the microscopic origin of ferromagnetism has remained some-
what elusive, until today! Pauli paramagnetism, ferro-, ferri- and antiferromag-
netism are quantum phenomena connected to the spin of electrons and to Pauli’s
exclusion principle. The theory of paramagnetism in (free) electron gases is quite
straightforward.(1) Antiferromagnetism is relatively well understood: A mecha-
nism for the generation of antiferromagnetic exchange interactions has been pro-
posed by Anderson,(2) who discovered a close relationship between the half-filled
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Hubbard model and the Heisenberg antiferromagnet using perturbative methods;
(see also Ref. 3 for mathematically more compelling and more general variants of
Anderson’s key observation). It has been proven rigorously by Dyson, Lieb and
Simon,(4) using the method of infrared bounds previously discovered in Ref. 5, that
the quantum Heisenberg antiferromagnet with nearest-neighbour exchange cou-
plings exhibits a phase transition accompanied by spontaneous symmetry breaking
and the emergence of gapless spin waves, as the temperature is lowered, in three
or more dimensions. (The Mermin-Wagner theorem says that, in (one and) two
dimensions, continuous symmetries cannot be broken spontaneously in models
with short-range interactions(6)).

Our mathematical understanding of ferromagnetism is far less advanced.
Some kind of heuristic theory of ferromagnetism emerged, long ago, in the classic
works of Heisenberg, Bloch, Stoner, Dyson, Landau and Lifshitz, and others.(7)

Various insights have been gained on the basis of some form of mean-field theory,
with small fluctuations around mean-field theory taken into account within a
linear approximation. This approximation, however, is known to break down in
the vicinity of the critical point of a ferromagnetic material, where nonlinear
fluctuations play a crucial role.(8)

In a variety of tight-binding models of itinerant electrons, ferromagnetic order
has been exhibited in the ground state (i.e., at zero temperature); see Refs. 9–11.
One of these models is a fairly natural two-band model in which ferromagnetism
arises from a competition between electron hopping, Coulomb repulsion and an
on-site Hund’s rule.(11) (Hund’s rule says that the spin-triplet state of two elec-
trons occupying the same site is energetically favoured over the spin-singlet state.
It should be emphasized, however, that a mathematically rigorous derivation of
Hund’s rule in atomic physics from first principles has not been accomplished,
so far.) None of the results in Refs. 9–11 comes close to providing some un-
derstanding of ferromagnetic order and of an order-disorder phase transition at
positive temperature. It is not known how to derive, with mathematical precision,
an effective Hamiltonian with explicit ferromagnetic exchange couplings from the
microscopic Schrödinger equation, or a tight-binding approximation thereof, of
ferromagnetic materials. But even if we resort to a phenomenological description
of such materials in terms of models where ferromagnetic exchange couplings
have been put in by hand we face the problem that we are unable to exhibit fer-
romagnetic order at low enough temperature and to establish an order-disorder
phase transition in three or more dimensions. No mathematically rigorous proof
of the phase transition in the quantum Heisenberg ferromagnet is known, to date!
(Such a result has, however, been established for classical Heisenberg models in
Ref. 5).

Ab-initio quantum Monte Carlo simulations of models of quantum ferromag-
nets are plagued by the well known “sign- (or complex-phase) problem.”
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Thus, until now, there are neither substantial mathematically rigorous results
on, nor are there reliable ab-initio numerical simulations of, realistic models of
ferromagnetic metals, such as Ni, Co or Fe! Given that ferromagnetism is among
the most striking macroscopic manifestations-apparent, e.g., in the needle of a
compass-of the quantum-mechanical nature of matter, this is clearly a desolate
state of affairs.

In the present paper we shall not remedy this unsatisfactory situation. How-
ever, first, we attempt to draw renewed attention to it, and, second, we outline a
formalism and some fairly elementary analytical observations of which we hope
that they will ultimately lead to a better, mathematically rather precise understand-
ing of ferromagnetism. Were it not known already, our analysis and the one in
Ref. 11 would make clear that ferromagnetism is a non-perturbative phenomenon
involving strong correlations and gapless modes. To understand it mathematically
will most probably necessitate a full-fledged multi-scale (renormalization group)
analysis. The formalism presented in this paper and our calculations are intended
to provide a convenient starting point for such an analysis.

Analytical work on ferromagnetism may seem to be rather unfashionable.
However, there are recent developments, such as spintronics, fast magnetic devices,
etc. that may make work like ours appear worthwhile. Our own motivation for the
work that led to this paper actually originated in studying recent experiments with
beams of spin-polarized, hot electrons shot through ferromagnetically ordered
films consisting of Ni, Co or Fe that were carried out in the group of H.C.
Siegmann at ETH; see Refs. 12, 13. Back in 1998, it became clear to one of us
that the concept of the “Weiss exchange field” (see e.g. Refs. 14, 15) would play
a useful role in a theoretical interpretation of the experimental results reported in
Refs. 12, 13. More generally, the Weiss exchange field appears to offer a key to a
systematic study of phase transitions in magnetic materials, magnetic order, spin
precession, magnon dynamics and electron transport in magnetic materials; (see
Sec. 2 for a brief overview). In this paper, we focus attention on elucidating the
microscopic origin of the Weiss exchange field, on the role it plays in the theory
of magnetism, and on its dynamics.

Our paper is organized as follows.
In Sec. 2, we describe the experiments reported in Refs. 12, 13 and sketch a

phenomenological interpretation, based on scattering theory, of the results found
in these experiments, merely adding some conceptual remarks to the discussion of
our experimental colleagues and describing the role played by the Weiss exchange
field.

A mathematically precise analysis of the scattering of electrons (or neutrons,
photons, . . . ) at dynamical targets, such as magnetic films, metallic solids, liquid
droplets, . . . , will appear elsewhere; (some first results appear in Ref. 16).

We then briefly mention some further experiments involving spin-polarized
electric currents in magnetic materials that can be interpreted, theoretically, by
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introducing a Weiss exchange field. Furthermore, some “gedanken experiments,”
such as a Stern-Gerlach experiment for electrons, providing direct evidence for
effects caused by the exchange field are outlined.

In Sec. 3, we reformulate one-band t − J and Hubbard models in terms of
a dynamical Weiss exchange field. For this purpose, the standard imaginary-time
functional integral formalism for the analysis of thermal equilibrium states of
quantum many-body systems is recalled. The Weiss exchange field is seen to be a
Lagrange-multiplier field in a Hubbard-Stratonovich transformation of the original
functional integral that renders the action functional quadratic in the Grassmann
variables describing the electronic degrees of freedom; see e.g. Refs. 15, 17. The
effective field theory of the Weiss exchange field is obtained after integrating over
those Grassmann variables. The effective (imaginary-time) action functional of
the exchange field and identities for Green functions of spin operators are derived.

In Sec. 4, we determine the leading terms of the effective action of the
Weiss exchange field, W, in the approximation where fluctuations of the length
of the exchange field are neglected. For this purpose, we derive the ferro- and
antiferromagnetic mean-field equations from the exact effective action of the
exchange field. By solving these equations we determine the most likely length,
W0, of the exchange field. From that point on, the length of the exchange field is
frozen to be |W| ≡ W0.

We then consider a one-band Hubbard model with a half-filled band and
find that, in this situation, the effective action of W is the one of a nonlinear σ -
model with a minimum that favours Néel order. This result is found on the basis of
controlled perturbative calculations and goes beyond linear stability analysis of the
antiferromagnetic mean-field solution, (which has been presented, e.g., in Ref. 15).
It represents a functional-integral version of Anderson’s basic observations.(2)

We then turn to ferromagnetically ordered mean field solutions and show that
translation-invariant, but time-dependent fluctuations are not a source of instability
of such a solution. Then we consider a one-band Hubbard model with a less than
half-filled, fairly flat band. One expects that ferromagnetism prevails under these
conditions. Indeed, we find that, at low temperatures, the ferromagnetic mean-field
equation has a non-trivial solution, and that this solution belongs to a quadratically
stable critical point of the effective action of W. This conclusion is the result of
somewhat subtle calculations involving processes close to the Fermi surface, which
make the dominant contribution (but would lead to small-energy denominators in
a purely perturbative analysis). Details will appear in Ref. 18. Our calculations
support the idea that the one-band Hubbard model with a less than half-filled, fairly
flat band describes coexistence of metallic behaviour with ferromagnetic order,
at sufficiently low temperatures. A similar conclusion was reached, tentatively, in
Ref. 11 for some two-band Hund-Hubbard models. The methods of the present
paper also apply to the model discussed in Ref. 11; see Ref. 18.
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In the next to last subsection of Sec. 4, we exhibit a universal Wess-Zumino
term in the effective action of the Weiss exchange field W and calculate its
coefficient, which is purely imaginary. The Wess-Zumino term is “irrelevant”
for antiferromagnets, but plays a crucial role in the dynamics of magnons in
ferromagnetically ordered systems. Repeating arguments in Ref. 19, we derive the
Landau-Lifshitz equations for magnons in a ferromagnet.

Finally, we draw attention to two well known arguments explaining why there
is no magnetic ordering at positive temperature, in one and two dimensions; (but
see Ref. 6).

In Sec. 5, we sketch novel rigorous proofs, based on analyzing the effec-
tive field theory of the exchange field, W, of the existence of phase transitions
and magnetic order at low temperatures in a class of XY -models, Heisenberg
antiferromagnets and ferromagnets of localized SO(2n)-spins, for n = 1, 2, . . ..
See Ref. 4 for the original results. Our proof is based on establishing reflection
positivity of the effective field theory of the exchange field W and then using the
original techniques developed in Ref. 5; (see also Refs. 20, 21).

It should be emphasized that the concept of the Weiss exchange field has a
number of further, quite exciting applications. We hope to return to these matters
in future papers.

Some of the material in this paper has a review character; but some of it is
new. We hope it is fairly easy to read. If it draws renewed attention to some of
the deep technical problems in the quantum theory of magnetism it has fulfilled
its purpose. We gratefully dedicate this paper, belatedly, to two great colleagues
and friends of the senior author (J.F.): G. Jona-Lasinio, on the occasion of his
seventieth birthday, and H.-C. Siegmann, on the occasion of his retirement from
ETH.

2. REAL AND GEDANKEN EXPERIMENTS INVOLVING

THE WEISS EXCHANGE FIELD

We start this section with a brief description of recent experiments carried
out by Oberli, Burgermeister, Riesen, Weber and Siegmann at ETH-Zürich.(12,13)

In these experiments, a beam of hot, spin–polarized electrons is shot through a
thin ferromagnetic film (Ni, Co, or Fe) and the polarization of the outgoing beam
is observed. Their experimental setup is as described in Fig. 1.

The following quantities are measurable:

(i) The thickness, d, of the film; d is a few nanometers.
(ii) The average energy, E , of an incident electron; if EF denotes the Fermi

energy of the magnetic film then E − EF varies between 4eV and 16eV .
The group velocity of the electrons inside the film is denoted by v; it
is not directly measurable, but it is comparable to (2(E + eV )/m∗

el)
1/2,
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Fig. 1. Experimental setup.

where eV is the average potential energy of an electron and m∗
el its

effective mass inside the film.
(iii) The degree, P0, and the direction, n0, of the spin polarization of the

incident electron beam; (in Fig. 1, n0 is parallel to the x-direction, v to
the y-direction); the same quantities, P and n, for the outgoing beam.

(iv) The direction of the magnetization, M, of the film (in Fig. 1 chosen to
be parallel to the z-axis); the angles, θ0 and θ , between n0 and M and
between n and M, respectively (θ0 = π/2, in Fig. 1). Experimentally,
the angle θ is found to be considerably smaller than θ0, i.e., the spins
of the transmitted electrons rotate into the direction of the spontaneous
magnetization M of the film. This is interpreted as being mainly due
to an enhanced absorption of minority-spin electrons, as compared to
majority-spin electrons; see (vi). (It appears that the contribution of spin
flip processes accompanied by magnon emission into the film – “Stoner
excitations” – to the total spin rotation is only around 5%(12)).

(v) The spin precession angle, ε, between the projections of n0 and of n
onto the plane perpendicular to M (the xy-plane of Fig. 1); ε is found
to be “large” (tens of degrees).

(vi) Let I be the intensity of the incident beam, and let I + = I +(E) and
I − = I −(E) be the intensities of the outgoing beam of electrons with
spin parallel or antiparallel to M, respectively, assuming the incident
beam has intensity I and the spins of its electrons are parallel to M
(n0 parallel to M, P0

∼= 1), or antiparallel to M (n0 anti-parallel to M,
P0

∼= 1), respectively. Then θ0 = θ = 0, or θ0 = θ = π , respectively,
and ε = 0. I + and I − can be measured and yield the spin-transmission
asymmetry

A = I + − I −

I + + I − ;
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A is found to be positive and large. This is interpreted in terms of
rates of transitions of electrons into unoccupied 3d states (holes): There
are more unoccupied 3d states in the film with spin antiparallel to M
(minority spin) than with spin parallel to M (majority spin). This explains
qualitatively the experimental results found for A and for θ − θ0 (see
(iv))(12).

(vii) The orbital deflection angle, α, between the directions of the incident
and the transmitted beam (not indicated in Fig. 1). Experimentally α is
found to be negligibly small. This tells us that the integrated Lorentz
force on the electrons transmitted through the film is tiny. The precession
of the spins of the electrons when they traverse the film can therefore
not be explained by Zeeman coupling of the spins to the magnetic field
inside the layer. It is mainly due to Zeeman coupling of the spins to what
will be called the Weiss exchange field. In iron, the Weiss exchange field
causing the observed spin precession would correspond to a magnetic
field of roughly 8000 Tesla (which is gigantic).

A theoretical interpretation of the experimental results reported in Ref. 12
can be attempted within the formalism of scattering theory. If the luminosity of the
incident beam is low we can consider a single incoming electron. The incoming
state is described as a tensor product of a Pauli spinor, ψin, describing the incident
electron and a state, ξ , of the film. Typically, ξ is the ground state (temperature
T = 0) or a thermal equilibrium state (T > 0) of the film. The outcoming state,
long after the interactions between an outgoing electron and the film have taken
place, is more complicated and will, in general, exhibit entanglement between the
electron and the degrees of freedom of the film. If only measurements far away
from the film are performed, as in Ref. 12, the outgoing state can be described as
a density matrix

Pout = (ρN )∞N=0, (2.1)

where ρN is a non-negative, trace-class operator on the Hilbert space of N outgoing
electrons (the incident electron has knocked N − 1 electrons out of the film),
N = 2, 3, . . . ; ρ0 is a non-negative number, the absorption probability, ρ1 is a
non-negative trace-class operator on the Hilbert space

H = L2(R3) ⊗ C
2 (2.2)

of square-integrable Pauli spinors and describes the (generally mixed) state of one
outgoing electron. “Conservation of probability” implies that

ρ0 +
∞∑

N=1

TrρN = 1. (2.3)



84 Albert et al.

The state Pout is obtained by taking a partial trace of the outgoing state of the total
system, including the film, over the degrees of freedom of the film. This is justified,
because the degrees of freedom of the film are not observed in the experiment. If
the energy, E , of the incident electron is below (or comparable to) the threshold,
	(2), for emission of two or more electrons from the film then

ρN = 0 for N ≥ 2. (2.4)

In the interpretation of the experimental data provided in Ref. 12, this is tacitly
assumed.

Experimentally, the absorption probability ρ0 and the spin polarizations P0

and P of the incoming and the outgoing electron, respectively, are measured. The
vectors P0 and P are given by

P0 ≡ P0n0 = 〈ψin, σψin〉, (2.5)

and

P ≡ Pn = 1

TrH(ρ1)
TrH(ρ1σ ), (2.6)

where ψin is the wave function of the incident electron, σ = (σx , σy, σz) is the
vector of Pauli matrices, and ρ̃1 := [TrH(ρ1)]−1ρ1 is the conditional state of the
outgoing electron, given that it has not been absorbed in the film. If (2.4) is
assumed to hold then

TrH(ρ1) = 1 − ρ0. (2.7)

Since we have assumed that the incoming electron has been prepared in a
pure state,

P0 ≡ |P0| = 1. (2.8)

However, there is, a priori, no reason why ρ̃1 should be a pure state. If it were pure
then

P = |P| = 1. (2.9)

It would be highly interesting to estimate, experimentally, the amount of
entanglement with the film (or decoherence) in the state of the outgoing electron
by measuring the quotient P/P0. If P/P0 < 1 then ρ̃1 = [TrH(ρ1)]−1ρ1 is not
a pure state, anymore, meaning there is entanglement with the film. Apparently,
P/P0 has not been measured accurately, yet.

A moment’s reflection shows that spin flip processes accompanied by magnon
emission in the film (“Stoner excitations”) lead to entanglement; while absorption
of electrons into unoccupied 3d states need not be correlated with entanglement
of the states of those electrons that do traverse the film. In fact, it is implicitly
assumed in Ref. 12 that if Stoner excitations are neglected then ρ̃1 is close to a
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pure state (at least in spin-space). The experimental techniques of Ref. 12 could
be used to test this hypothesis.

Next, we express the spin transmission asymmetry A (see (vi)) in terms of
outgoing states. Let ψ+

in and ψ−
in be incoming states with spin polarization P0 ≡ P+

0
parallel to M (majority spin) and P0 ≡ P−

0 antiparallel to M (minority spin). Let
P+

out = (ρ+
N )∞N=0 and P−

out = (ρ−
N )∞N=0 be outgoing states corresponding to ψ+

in , ψ−
in ,

respectively. Then

A = ρ−
0 − ρ+

0

2 − ρ+
0 − ρ−

0

, (2.10)

as follows from (2.3). More interesting would be measurements of

P± = Tr(ρ̃±
1 σ ). (2.11)

Clearly P± are parallel or anti-parallel to M; but their lengths P± = |P±| ought to
be measured. In Ref. 12, it is tacitly assumed that P± ∼= 1, and that the states ρ̃±

1
are close to pure states; but serious experimental data backing up this hypothesis
appear to be lacking. It is clear that it would be invalidated if “Stoner excitations”
played an important role.

In the following, we outline a phenomenological description of the experi-
ments in Ref. 12, assuming that (2.4) and the hypothesis just discussed (purity of
ρ̃±

1 ) are valid. (A more detailed discussion of the scattering approach to electron
transmission– and reflection experiments will be presented elsewhere.)

When an incoming electron enters the film it occupies an empty state of the
film. If the film is crystalline this state belongs to a band of states; let α be the
corresponding band index. The state of an electron in band α is described by a
Pauli spinor

φ = (φ+, φ−), (2.12)

where φ+ and φ− are the components of φ with spin parallel or anti-parallel
to the magnetization M, respectively. Adopting the approximation of the Peierls
substitution, the Pauli equation for φ in configuration space has the form

i hD0φ = Eα(−i hD)φ, (2.13)

where Eα(p) is the band function of band α,

D0 = ∂

∂t
+ i

e

h
φc + i

(
Wc

0 · σ

2

)
, (2.14)

D j = ∂

∂x j
+ i

e

h
A j + i

(
W j · σ

2

)
. (2.15)

Here φc denotes a (complex) electrostatic potential, Wc
0 is a (complex) Weiss

exchange field, (A j ) = (A1, A2, A3) is the electromagnetic vector potential, and
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(W j ) = (W1, W2, W3) is an SU (2)-vector potential describing spin-orbit inter-
actions. As discussed in Ref. 14, (2.13) displays electromagnetic U (1)-gauge
invariance and SU (2)-gauge invariance, i.e., covariance with respect to local
SU (2)-rotations in spin space. A number of important consequences of these
gauge symmetries have been pointed out in Ref. 14.

According to (vii) above, effects of the electromagnetic vector potential A
are apparently negligible; so A is set to 0. The electrostatic vector potential φc is
given, approximately, by

φc = V + i v̂ (2.16)

where eV is the surface exit work, and the imaginary part, v̂, of φc provides a
phenomenological description of spin-independent inelastic absorption processes
inside the film. Velocity-dependent spin-flip processes due to spin-orbit interac-
tions appear to play a very minor role in the experiments reported in Ref. 12; so
we may set W j to 0, j = 1, 2, 3.

The Weiss exchange field Wc
0 is given by

Wc
0 = W − iw, (2.17)

where the real part W describes exchange interactions between the incoming
electron and the electron density of the film, and the imaginary part, w, yields a
phenomenological description of spin-dependent absorption processes.

Let φin denote the Pauli spinor describing the state of an electron when it
enters the film at some time t0. Equation (2.13) can be solved for φ = φt , t ≥ t0,
with φt0 = φin. The solution is explicit if A = 0, W j = 0, j = 1, 2, 3. Let us
suppose that the real part W and the imaginary part w of the exchange field Wc

0
are both anti-parallel to the magnetization M of the film. Then (2.13) leads us
to consider two simple, quasi-one-dimensional scattering problems in a complex
potential well of depth

eV + iev̂ ± 1

2
(� − iω), (2.18)

with � = |W| and ω = |w|, for electrons with spin parallel to M(+), or anti-
parallel to M(−), respectively. The solution to these scattering problems can
be found in every book on elementary quantum mechanics. For the purposes
of interpreting the results in Ref. 12, a semi-classical treatment appears to be
adequate. The group velocity, v±, of an incoming electron wave with energy
peaked at E and spin up (+), or down (−), inside the film can be found by solving
the equation

Eα(p) = E − eV ∓ 1

2
� (2.19)
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for p and then setting

v± = ∂Eα

∂p
(p±), (2.20)

where p± is a solution of (2.19) chosen such that v± points in the positive
y-direction. The sojourn time τ± of the wave inside the film is then given by

τ± = d

v±
, with v± = |v±|. (2.21)

If φ±
in is the state of the electron with spin up (+), or spin down (−), respec-

tively, when it enters the film its state φ±
out upon leaving the film is then given,

approximately, by 5

φ±
out

∼= exp

(
−iτ±

[
(E − eV ) − iev̂ ∓ 1

2
(� − iω)

])
φ±

in . (2.22)

The presence of inelastic absorption processes implies that ev̂ ∓ ω/2 > 0. Setting

exp (−τ±[v̂ ∓ ω/2]) = c
√

1 ± A, (2.23)

we find that

φ±
out = c

√
1 ± Aei(θ±ε/2)φ±

in , (2.24)

where A is the spin transmission asymmetry (see point (iv) and (2.10)), ε is
the spin precession angle, and θ is an (unimportant) spin-independent phase. If
v+ ∼= v− = v then τ+ ∼= τ− ∼= d/v, and (2.22) yields

ε ∼= τ±� ∼= (d/v)|W|. (2.25)

Thus, measuring ε and d and estimating v yields an approximate value for the
size of the spin precession angular velocity � and hence of the size of the Weiss
exchange field.

Equations (2.22) and (2.24) could be mistaken for equations describing kaon-
or neutrino oscillations and are analogous to the equations describing the Faraday
rotation of light traversing a magnetized medium.

The origin of the Weiss exchange field W is hardly a mystery: The spin of
an electron traversing the film in a band α apparently experiences (exchange)
interactions with the spins of the occupied states of the film. Since states with spin
up and with spin down are occupied asymmetrically (corresponding to the fact
that M �= 0), the net spin density, S(x), at a point x in the film is different from
zero. The Weiss exchange field W = W(x) is given by

W(x) = −JαS(x), (2.26)

5 Here and henceforth, we use units such that h = 1.
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where Jα is the strength of the exchange coupling between spins in the αth band
and those in the occupied band. The theoretical discussion above is based on a
mean field ansatz: The exchange field W in (2.14), (2.17) is chosen to be

W = 〈W(x)〉 = −Jα〈S(x)〉. (2.27)

(Our conventions are such that 〈S(x)〉 is parallel to the magnetization M.) One of
the surprising implications of the experimental results of Ref. 12 is that, apparently,
Jα is quite large, even for rather high-lying bands (α), implying that the orbitals
of states in such bands must have substantial overlap with those of states in the
partially occupied, spin-polarized band.

Equation (2.26) makes it clear that W(x) is a dynamical field, its dynamics
being described by the Landau-Lifshitz equation. Variations of W in space and
time describe spin waves, its field quanta are the magnons.

One of the main purposes of this paper is to derive the effective quantum
dynamics of W(x) within a Lagrangian functional integral formalism and to sketch
what can be accomplished with this formalism; see Secs. 3 and 4.

We conclude this section by drawing the readers’ attention to various further
effects involving spin-polarized electric currents or electron beams in magnetic
materials that can be interpreted neatly with the help of the Weiss exchange field;
(a more detailed discussion goes beyond the scope of this paper).

Among such effects is the phenomenon of giant magneto resistance, see
Ref. 22; ones due to interactions of a spin-polarized current with spin waves, such
as Gilbert damping(23) and negative Gilbert damping(24); local switching of the
direction of W caused by its interactions with the precessing spins of electrons in
a spin-polarized beam,(25) polarization-dependent transmission of a spin-polarized
electron beam through a magnetized sample, which can be used for the purpose
of imaging magnetic domain structures (BEMM), see Ref. 26; etc.

We finally sketch some “gedanken experiments.”
By applying an external magnetic field rotating in the xy-plane with angular

velocity ω0 to a film magnetized in the z-direction, the exchange field W can be
made to rotate around the z-axis:

W(t) = W
(
ε cos(ω0t + δ), ε sin(ω0t + δ),

√
1 − ε2

)
.

A polarized beam of electrons shot through such a film must exhibit Bloch spin
resonance; but, in this experiment, it would be due to the rotation of the exchange
field.

One might also envisage a Stern Gerlach experiment for electrons. One would
start by constructing a sandwich of two ferromagnetic metals, I (e.g. Fe) and II
(e.g. Ni), with exchange fields WI and WI I of different strength, joined by a
transition region, a mixture of I and II, of width d0. The transition region would be
parallel to the xy-plane (see Fig. 2). One shoots an unpolarized beam of (not very



Magnetism and the Weiss Exchange Field 89

Fig. 2. Stern-Gerlach experiment.

hot) electrons through the sandwich along the transition region between I and II,
as shown in Fig. 2. One would expect to detect two beams emerging on the other
side of the film in slightly different directions that are spin-polarized in opposite
directions.

The force, f , in the z-direction on an electron with spin up/down inside the
film is given, approximately, by

f ∼= ±|WI − WI I |
2d0

.

It yields a change in the z-component of the momentum of the electron during its
passage through the film given by

�pz
∼= ±|WI − WI I |

2d0

d

v
,

where v is the average group velocity. The deflection angle α is then found from

tan α ∼= �pz

py
.

Of course, as discussed above, the intensity, I+ of the upper beam can be expected
to be much larger than the intensity, I−, of the lower beam, due to spin-asymmetric
absorption inside the film.

In an experimental set-up similar to the one above, one could force an electron
current, spin-polarized in the z-direction, through the film. Then a Hall tension
in the z-direction should be observed (Hall effect for spin currents). Generally
speaking the Hall tension is parallel to the gradient of the Weiss exchange field,
while the Hall current is perpendicular to it. This and other related effects are
discussed in some detail in Ref. 14.
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3. THE WEISS EXCHANGE FIELD IN GENERAL ONE-BAND

(t − J AND HUBBARD) TIGHT-BINDING MODELS

In this section, we study the origin and dynamics of the Weiss exchange field
in simple tight-binding models. We start by considering one-band models; but it
is straightforward to include higher (partially occupied or empty) bands relevant
for the study of electron transmission through magnetic films.

Every site, x , of a lattice �
e.g.= Z

d , d = 1, 2, 3, . . . carries a four-dimensional
state space, C

4, corresponding to an empty state, a one-electron state with spin
up (+) or down (−), or a state of two electrons in a spin-singlet state. The
corresponding basis vectors of C

4 are denoted by {|0〉x , |+〉x , |−〉x , | + −〉x },
x ∈ �. We introduce electron creation- and annihilation operators, c†s (x) and cs(x),
respectively, where s = ±, x ∈ �, satisfying canonical anti-commutation relations

{
c#

s (x), c#
s ′ (x ′)

} = 0 ,
{
c†s (x), cs ′ (x ′)

} = δss ′δxx ′ , (3.1)

with c# = c or c†. Then

cs(x)|0〉x = 0 , for s = ± , x ∈ � , (3.2)

and

|s〉x = c†s (x)|0〉x , etc. (3.3)

Number operators are given by

ns(x) = c†s (x)cs(x) , n(x) = n+(x) + n−(x) , (3.4)

where ns(x) measures the number of electrons at site x with spin s. By (3.1), ns(x)
has eigenvalues 0 and 1, while n(x) has eigenvalues 0, 1 and 2. The spin operator,
S(x), at site x is given by

S(x) = 1

2

∑

s,s ′
c†s (x)σ ss ′cs ′ (x) , (3.5)

where σss ′ is the (ss ′)-matrix element of the vector of Pauli matrices σ =
(σx , σy, σz). The operators S(x) vanish on |0〉x and on | + −〉x , while, for any
linear combination, φ(x), of |+〉x and |−〉x ,

S(x) · S(x)φ(x) = 3

4
φ(x) . (3.6)

The dynamics of a gas of electrons moving on the lattice � is assumed to be
generated by a t − J model Hamiltonian of the form

H = T + U + E �= , (3.7)
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where the kinetic energy operator, T , (the hopping term) is given by

T =
∑

x �=y

t̂(x − y)
∑

s

c†s (x)cs(y) , (3.8)

U = U0

∑

x

n+(x)n−(x) (3.9)

describes an on-site (Hubbard) repulsion, and

E �= = −1

2

∑

x,y

J�=(x − y)S(x) · S(y) (3.10)

describes (effective) exchange interactions between the spins of electrons. In
(3.8), t̂(x − y) is the amplitude for hopping of an electron from site y to site

x . Selfadjointness of the Hamiltonian H implies that t̂(x − y) = t̂(y − x). The
constant U0 is a measure of the strength of the on-site repulsion, and J�=(x − y) is
the exchange coupling between spins at x and y, with J�=(0) = 0.

The term U can be rewritten as follows. When x is empty or singly occupied
U0n+(x)n−(x) vanishes; when x is doubly occupied it takes the value U0. Thus,
by (3.6),

U0n+(x)n−(x) = 1

2
U0n(x) − 2

3
U0S(x) · S(x) = −2

3
U0 : S(x) · S(x) : , (3.11)

where : . : denotes normal ordering. We now set J (0) = 4
3U0, J (x) = J�=(x), for

x �= 0, and find

H = T + E , (3.12)

with

E = −1

2

∑

x,y

J (x − y) : S(x) · S(y) : . (3.13)

The Heisenberg model corresponds to a completely flat band, i.e.,

T = 0 , or t̂(x) ≡ 0 . (3.14)

Our goal is to study the grand-canonical partition function

�(β,µ) := Tr

(
e
−β[H−µ

∑
x

n(x)]
)

(3.15)

and the thermal equilibrium state given by the density matrix

Pβ,µ = �(β,µ)−1e
−β[H−µ

∑
x

n(x)]
(3.16)

for the family of Hamiltonians introduced above.
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Remark: Of course, these objects must first be calculated for arbitrary bounded
regions, �, in the lattice � (indicated by a superscript “�”). Afterwards, one may
attempt to pass to the thermodynamic limit, � ↗ �, setting

βg(β,µ) = − lim
�↗�

1

|�| ln ��(β,µ) (3.17)

and

ωβ,µ(·) = lim
�↗�

Tr
(
P�

β,µ(·)) , (3.18)

where |�| is the number of sites in �. These are standard matters (see e.g. Ref. 27)
and will not be discussed any further. The superscript “�” will often be suppressed
in our notation.

It is convenient to study �(β,µ) and the state ωβ,µ by making use of func-
tional integration. With every x ∈ � and every imaginary time t ∈ [0, β), we
associate anticommuting (Grassmann) variables, C̄s(x, t) and Cs(x, t), with

{
(−)
Cs (x, t) ,

(−)
Cs ′ (x ′, t ′)

}
= 0 ,

and

C#
s (x, t + β) = −C#

s (x, t) . (3.19)

The anti-periodic boundary conditions in (3.19) are a consequence of the KMS
condition; see e.g. Ref. 17. We introduce an (imaginary-time) action functional

SJ (C̄, C) =
∫ β

0
dt

[(
∑

x,s

C̄s(x, t)
∂

∂t
Cs(x, t)

)
− H (C̄(., t), C(., t))

− µ
∑

x,s

C̄s(x, t)Cs(x, t)

]
, (3.20)

where H (C̄, C) is obtained from the Hamiltonian H by replacing the operators
cs(x) and c†s (x) by Cs(x, t) and C̄s(x, t), respectively. Because of the presence of
products of C- and C̄-fields at coinciding sites and imaginary times the quartic term
needs to be regularized; (the ambiguity of the quadratic terms is an unimportant
constant). We introduce an infinitesimal separation of the imaginary times, setting

Sε(x, t) = 1

2

∑

s,s ′
C̄s(x, t + ε)σ ss ′Cs ′ (x, t − ε) (3.21)

in the action. Then the time ordering of the C- and C̄-fields corresponds to the
normal ordering of the operators c�. Using (3.13), the regularized action is seen to
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be given by

Sε
J (C̄, C) =

∫ β

0
dt

[(
∑

x,s

C̄s(x, t)
∂

∂t
Cs(x, t)

)

−
∑

x �=y

t̂(x − y)
∑

s

C̄s(x, t)Cs(y, t) + 1

2

∑

x,y

J (x − y)

× Sε(x, t) · Sε(y, t) + µ
∑

x,s

C̄s(x, t)Cs(x, t)

]
, (3.22)

Berezin’s integration form for anticommuting variables is formally given by

DC̄DC = �t∈[0,β)�x�sdC̄s(x, t)dCs(x, t) . (3.23)

Then

�(β,µ) = lim
ε↘0

∫
DC̄DCeSε

J (C̄,C) (3.24)

and the state ωβ,µ can be reconstructed from the imaginary-time Green functions

〈
� j C̄s j (x j , t j )Cs ′

j
(x ′

j , t ′
j )
〉

β,µ
= �(β,µ)−1 lim

ε↘0

∫
DC̄DCeSε

J (C̄,C)

×� j C̄s j (x j , t j )Cs ′
j
(x ′

j , t ′
j ) , (3.25)

see, e.g. Refs. 17, 28.
If Sε

J (C̄, C) were quadratic in C and C̄ the Berezin integrals in (3.24), (3.25)
could be evaluated and expressed in terms of determinants. The only contribution
to Sε

J (C̄, C) not quadratic in C̄ , C comes from the term

∫ β

0
dt
∑

x,y

J (x − y)Sε(x, t) · Sε(y, t) . (3.26)

By introducing a Lagrange-multiplier field (“Hubbard-Stratonovich transfor-
mation”) this term, too, can be rendered quadratic in C̄ and C . The Lagrange
multiplier field will turn out to be the Weiss exchange field W.

Let K denote the matrix inverse of J , i.e., K̂ (k) = Ĵ (k)−1, where k is a
point in the first Brillouin zone, B� , of the lattice �, and Ĵ , K̂ denote the Fourier
transforms of J and K . If U0 is chosen to be large enough then J and K are positive-
definite, i.e., Ĵ (k) > 0, K̂ (k) > 0, for k ∈ B� . We introduce a real, vector-valued
random field, W(x, t), x ∈ �, t ∈ [0, β), with

W(x, t + β) = W(x, t) (3.27)
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(KMS condition for bosons; see e.g. Ref. 17), assumed to have a Gaussian distri-
bution

dµK (W) = eSK (W)DW , (3.28)

where

SK (W) = −1

2

∫ β

0
dt
∑

x,y

W(x, t)K (x − y)W(y, t) , (3.29)

DW = constK �t∈[0,β)�x d3W (x, t) , (3.30)

and constK is chosen such that
∫

dµK (W) = 1 . (3.31)

We define6

S0(C̄, C) = SJ=0(C̄, C) , (3.32)

S1(C̄, C ; W) = −
∫ β

0
dt

(
∑

x

W(x, t) · S(x, t)

)
, (3.33)

and

S̄(C̄, C ; W) = S0(C̄, C) + S1(C̄, C ; W) + SK (W) . (3.34)

We note that S̄(C̄, C ; W) is quadratic in C̄ and C and in W (separately), and that
∫

DWeS̄(C̄,C ;W) = eSJ (C̄,C) , (3.35)

as follows by quadratic completion.
It is apparent from (3.33) that W(x, t) plays the role of the Weiss exchange

field. In order to calculate the grand canonical partition function �(β,µ), we have
to integrate the R.S. of (3.35) over C̄ and C . Since S̄(C̄, C ; W) is quadratic in C̄
and C , it is tempting to interchange the W - and the C̄ , C - integrations. First
doing the C̄ , C - integration yields

∫
DC̄DCeS0(C̄,C)+S1(C̄,C ;W) = det(DW) , (3.36)

where the operator DW acts on the space

h = C∞([0, β))ap ⊗ (
l2(�) ⊗ C

2
)

(3.37)

6 Henceforth we suppress the regularization indicated by ε.
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(“ap” stands for “antiperiodic”) and is determined by requiring that

S0(C̄, C) + S1(C̄, C ; W) =
∫ β

0
dt
∑

x,s

C̄(x, t)(DWC)(x, t) .

Thus, DW is given by

DW = ∂

∂t
⊗ 1 + 1 ⊗ (

t̂ − µ1
)+ 1

2
W(x, t) · σ , (3.38)

where (t̂h)(x) = ∑
y

t̂(x − y)h(y) , h ∈ l2(�).

After Fourier transformation in t and x , vectors in the space h are given by
two-component spinors

φ(k, k0) =
(

f+(k, k0)

f−(k, k0)

)
,

with k ∈ B� and k0 = (π/β)(2n + 1), n ∈ Z, and

(DWφ)(k, k0) = (−ik0 + t(k) − µ) φ(k, k0) + 1

2

∫

B�

dk′

(2π )3

×
∑

k ′
0

Ŵ(k − k′, k0 − k ′
0) · (σφ)(k′, k ′

0) , (3.39)

where t(k) is the Fourier transform of t̂(x). Defining the effective action, Seff (W),
of the exchange field, W, by

Seff (W) = ln det(DW) + SK (W) , (3.40)

we find that, for example,

�(β,µ) =
∫

DWeSeff (W) . (3.41)

Note that

δ

δW(x, t)
eS̄(C̄,C ;W) = −

(
∑

y

K (x − y)W(y, t) + S(x, t)

)
eS̄(C̄,C ;W). (3.42)

Setting

δW(x,t) = δ

δW(x, t)
+
∑

y

K (x − y)W(y, t) ,
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the imaginary-time Green function corresponding to a product,
n∏

j=1
Sα j (x j , t j ), of

spin operators turns out to be given by
〈

n∏

j=1

Sα j (x j , t j )

〉

β,µ

= (−1)n�(β,µ)−1
∫

DW
n∏

j=1

δWα j (x j ,t j )e
Seff (W) , (3.43)

where we have used (3.36), (3.40) and (3.42).
Our purpose is now to determine Seff (W) as explicitly as possible, in order

to get some insight into the R.S. of (3.41) and (3.43); see also Ref. 29.

4. EFFECTIVE σ -MODELS OF THE EXCHANGE FIELD

If we want to apply the method of steepest descent to estimate the R.S. of
(3.41) and of (3.43), we must look for the (absolute and local) maxima of Seff (W).
This leads us to consider mean-field ansätze for configurations, W, corresponding
to local maxima of Seff (W).

4.1. Ferromagnetic Mean-Field Theory

We set

W(x, t) = W0n , (4.1)

independently of x and t , where n is a unit vector, and W0 > 0. Because of the
symmetry of the problem under rotations of W, we can choose n = nz to point
into the z-direction. The problem of evaluating

gm f (β,µ; W0) = lim
�↗�

− 1

β|�| S�
eff (W ≡ W0nz) (4.2)

is elementary, because, in momentum space, all modes decouple from one another,
and we can appeal to well known calculations (see e.g. Refs. 15, 17) to obtain the
answer:

gm f (β,µ; W0) = 1

2
K̂ (0)W 2

0 − lim
�↗�

1

β|�| ln det(DW=W0n)

= 1

2
K̂ (0)W 2

0 − 1

β

∫

B�

dk

(2π )3
ln
[ (

1 + e−β(ε(k)+W0/2)
)

× (
1 + e−β(ε(k)−W0/2)

) ]+ const. , (4.3)

where

ε(k) = t(k) − µ . (4.4)
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Formula(4.3) can also be derived directly from the definition of ln det(DW) =
Tr ln(DW) by using the Poisson summation formula.

In the limit β −→ ∞, expression (4.3) converges to

gm f (∞, µ; W0) = 1

2
K̂ (0)W 2

0

+
∫

B�

dk

(2π )3

[
2ε(k)�

(
−W0

2
− ε(k)

)
+
(

ε(k) − W0

2

)

�

(
W0

2
− |ε(k)|

)]
+ const. , (4.5)

which is the ground state energy density of electrons in a constant exchange field
W = W0nz . The value of W0 minimizing gm f is found by solving the equation
(∂/∂W0)gm f (β,µ; W0) = 0, i.e.,

K̂ (0)W0 = 1

2

∫

B�

dk

(2π )3

[(
eβ(ε(k)− W0

2 ) + 1
)−1

−
(

eβ(ε(k)+ W0
2 ) + 1

)−1
]

. (4.6)

When β → 0 the R.S. of (4.6) tends to 0, and we conclude that, for small β, this
equation only has the trivial solution, W0 = 0. When β → ∞, Eq. (4.6) yields the
equation

K̂ (0)W0 = 1

2

∫

B�

dk

(2π )3
�

(
W0

2
− |ε(k)|

)
. (4.7)

Besides the trivial solution, this equation also has a non-trivial solution W0 > 0,
provided K̂ (0) is sufficiently small (depending on t̂). We recall that

K̂ (0) = Ĵ (0)−1 =
(

4U0

3
+ Ĵ�=(0)

)−1

. (4.8)

Thus, for U0/t∗, with t∗ := max |t̂(x)|, large enough, Eq. (4.6) has a non-trivial
solution, provided β is large enough, even in the Hubbard model, where J�= = 0.
Note that, by (3.42) and (3.43),

−
∑

y

K (x − y)〈W(y, t)〉β,µ = 〈S(x, t)〉β,µ . (4.9)

Thus,

K̂ (0)W0 = M , (4.10)

where W0 is the non-trivial solution of Eq. (4.6), and M is the spontaneous
magnetization in mean-field theory (i.e., −Mnz = 〈S(x, t)〉m f

β,µ). Thus, Eq. (4.7)
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Fig. 3. Spin-split bands.

tells us that, at zero temperature (β → ∞),

M = 1

2

∫

B�

dk

(2π )3
�

(
Ĵ (0)

2
M − |ε(k)|

)
, (4.11)

where Ĵ (0) = ∑
x

J (x) = K̂ (0)−1. This equation has an obvious interpretation

apparent from Fig. 3.
Matters simplify further for a flat band, t ≡ 0, i.e., for the Heisenberg model.

Then eq. (4.7) reduces to

M =
{

1/2 , − Ĵ (0)/4 < µ < Ĵ (0)/4 ,

0 , otherwise ,
(4.12)

for β → ∞. For, Eq. (4.5) implies that

gm f (∞, µ; W0) = 1

2
K̂ (0)W 2

0 − W0

2
�

(
W0

2
− |µ|

)
, (4.13)

up to an unimportant constant. Thus, for |µ| < 1/(4K̂ (0)) = Ĵ (0)/4,
gm f (∞, µ; W0) has a quadratic minimum at W0 = 1/(2K̂ (0)), with

gm f

(
∞, µ; W0 = 1

2K̂ (0)

)
= − 1

2K̂ (0)
,

and

∂2gm f

∂W 2
0

(
∞, µ; W0 ≈ 1

2K̂ (0)

)
≡ K̂ (0) . (4.14)

4.2. Antiferromagnetic Mean-Field Theory

Antiferromagnetism and Néel ordering in Hubbard models is discussed in
some detail in Ref. 15, so we shall be brief. To simplify matters, we consider
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the lattices � = Z
d , d = 1, 2, 3, . . . . Our mean-field ansatz configuration for the

exchange field W is given by

W(x, t) = (−1)|x |W0nz , (4.15)

which describes Néel order. We skip detailed calculations and give the result for
the free energy

gm f (β,µ, W0) = 1

2
K̂ (kπ )W 2

0 − 1

β

∫

B�

dk

(2π )3
ln
[(

1 + e−β
√

ε(k)2+(1/4)W 2
0

)

×
(

1 + eβ
√

ε(k)2+(1/4)W 2
0

)]
+ const , (4.16)

where kπ = (π, π, . . . , π ) denotes a corner of the Brillouin zone. In order to
derive (4.16), we assume that ε(k + kπ ) = −ε(k), i.e., we assume the band to be
half-filled. Note that small deviations, δε(k) = ε(k + kπ ) + ε(k), from half filling
can be taken into account with the help of perturbation theory in δε(k). The idea
behind the derivation of (4.16) is to consider simultaneously the contributions
of k and k + kπ , and then diagonalise a 4 × 4 matrix. The energy eigenvalues,

for fixed k, are given by ε±(k) = ±
√

ε2(k) + (1/4)W 2
0 , each one with twofold

degeneracy. From (4.16) we obtain the mean-field value of W0 by solving the
equation ∂gm f (β,µ; W0)/∂W0 = 0. In the limit where β → ∞, this equation
reduces to

K̂ (kπ ) = 1

4

∫

B�

dk

(2π )3

1√
ε(k)2 + (1/4)W 2

0

. (4.17)

The R.S. diverges logarithmically when W0 → 0, for a lattice � of arbitrary
dimension. Thus (4.17) has a non-trivial solution W0 > 0 for arbitrarily large
values of K̂ (kπ ) = (4U0/3 + J�=(kπ ))−1, i.e., for arbitrarily small values of the
on-site repulsion U0 (even if J�= = 0), and hence the same is true for finite, but
sufficiently large values of β. Thus

|ε±(k)| ≥ 1

2
W0 > 0 , (4.18)

and we conclude that a strictly positive energy gap W0 > 0 opens at the Fermi-
surface.

We note that the solution of (4.17) behaves like

W0 ∝ t∗e−α K̂ (kπ )t∗ , (4.19)

for some constant α. For the half-filled Hubbard model (J�= = 0, U0 > 0), K̂ (kπ ) =
3/(4U0), and we find that W0 has an essential singularity at U0 = 0.

Comparing these results with those obtained for the ferromagnetic mean-
field ansatz, we conclude that, at zero temperature, in the Hubbard model with
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K̂ (0) = K̂ (kπ ) = 3/(4U0), a non-trivial ferromagnetic mean-field solution does
not exist when U0 is small, while an antiferromagnetic mean-field solution exists
for arbitrarily small values of U0 at half filling, where the (mean-field) ground
state energy of the Néel state is found to be below the ground state energy of the
ferromagnetic state.

4.3. The Magnetic σ -Model

As we have seen, the mean-field ansätze correspond to quadratic (local)
maxima of the effective action as a function of the length W0 of the exchange
field. This suggests that the effective action Seff (W) is maximal on exchange-field
configurations of constant length, |W(x, t)| ≈ W0. It may therefore be appropriate
to study the effective action (3.40) with the constraint

|W(x, t)| = W0 , for all t ∈ [0, β) , x ∈ � . (4.20)

To study magnetic order, we consider the following ansatz for the effective action
on configurations of exchange fields of constant length, |W(x, t)| = W0:

S̃eff (W) =
∫ β

0
dt
∑

x

{
− W 2

0

2

∑

y

Ŵ(x, t)K (x − y)Ŵ(y, t)

+ Ct |∂t Ŵ(x, t)|2 + C∇|∇Ŵ(x, t)|2
}

+ CW Z

∫

S2,N

dtds
∑

x

Ŵ(x, t, s) · (∂t Ŵ(x, t, s) ∧ ∂sŴ(x, t, s))

+ higher order terms , (4.21)

where we have set Ŵ(x, t) := W −1
0 W(x, t) and where, for each x ∈ �, Ŵ(x, t, s)

is chosen to be a smooth extension of Ŵ(x, t) from the circle {t |0 ≤ t ≤ β} to
the northern hemisphere, S2,N , of the 2-sphere of radius β/(2π ). The operator ∇
denotes the finite difference gradient on the lattice, and the corresponding term in
the effective action has to be interpreted as

∑

x

|∇Ŵ(x, t)|2 :=
∑

|x−y|=1

|Ŵ(y, t) − Ŵ(x, t)|2 .

The functional S̃eff (W) is the (imaginary-time) action of a non-linear σ -model with
SO(3) symmetry and with a Wess-Zumino term. This model is called magnetic
σ -model. It is expected to describe exchange field configurations W in thermal
equilibrium at inverse temperature β, provided the coefficients Ct , C∇ and CW Z
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are chosen in such a way that

S̃eff (W) ≈ Seff (W) ||W (x,t)|=W0 +const . , (4.22)

on configurations W(x, t) satisfying the constraint |W(x, t)| = W0, with Seff (W)
as in (3.40). More precisely, if W = Wm f + χ , where Wm f is a mean(-exchange)-
field configuration and χ is a small perturbation of Wm f , i.e., χ(x, t) ⊥ Wm f (x)
and |χ(x, t)| � 1, for all x ∈ � and all times t , then we want (4.22) to hold
exactly to second order in χ . Equation (4.21) makes it clear that, in order to
calculate Ct , C∇ and CW Z such that (4.22) holds to second order in χ , it suffices
to consider time-independent exchange fields, W(x, t) ≡ W(x), to calculate C∇ ,
while it suffices to consider site-independent exchange fields, W(x, t) ≡ W(t),
when calculating Ct and CW Z . Obviously, the signs of Ct and C∇ will determine
the stable mean-field configuration Wm f . For Wm f to be independent of time t , Ct

must be negative (with our sign convention). For ferromagnetism to prevail, C∇
must be negative.

In the next two subsections, the coefficients Ct and C∇ are determined in such
a way that (4.22) holds to second order in χ , for an appropriate choice of Wm f

(depending on our choice of parameters in the original model). The coefficient
CW Z of the Wess-Zumino term will be calculated and shown to be imaginary in
the next to last subsection of Sec. 4. The Wess-Zumino term is crucial in arriving
at the correct magnon dynamics for ferromagnetically ordered magnets.

4.4. Stability of Antiferromagnetic Ordering at Half Filling

In this subsection we calculate the coefficients Ct and C∇ of the magnetic
σ -model (4.21), in such a way that (4.22) holds, in a regime where these co-
efficients can be calculated perturbatively. For the Hubbard model, this is the
regime where the band is half-filled, and the signs of the coefficients Ct and C∇
will indeed determine the stable mean exchange field to be time-independent and
antiferromagnetically ordered.

We first derive an innocent looking, but important identity, which will also
be useful in the next section. We set

D−
W = −∂t + ε − W , ε = t̂ − µ1 . (4.23)

Equation (3.38) shows that

DT
W = −∂t + ε + 1

2
(W1σ1 − W2σ2 + W3σ3) ,

where the superscript “T ” stands for transposition, (i.e., taking the adjoint, fol-
lowed by complex conjugation). Hence

σ2 DT
Wσ2 = −∂t + ε − W = D−

W . (4.24)
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Furthermore,

D∗
W = −∂t + ε + W = D−

−W . (4.25)

Since σ2 = σ ∗
2 = σ−1

2 , it follows from (4.24) that

det(DW) = det
(
DT

W

) = det
(
σ2 DT

Wσ2
) = det(D−

W) , (4.26)

and hence

det(DW) = det(D∗
W) = det(D−

−W) = det(D−W) . (4.27)

This identity shows that the real part of the logarithm of the determinant of DW is
given by:

� ln det(DW) = 1

2
ln det(DW D−W) ,

with

DW D−W = (∂t + ε)2 − W 2
0

4
− [ε, W ] − (∂t W ) .

We are tempted to treat [ε, W ] + (∂t W ) as a perturbation of

� := (∂t + ε)2 − W 2
0

4
. (4.28)

This is justified if |ε| � W0 and |∂t W | � W0. In this regime, the band of electrons
with spin parallel to the background field, Wm f , is filled and the band of electrons
with spin anti-parallel to Wm f is empty, i.e., the lattice is half-filled. At half-filling,
we expect the Hubbard model to exhibit an antiferromagnetic phase at sufficiently
low temperatures. We recall that ln det = tr ln and expand the logarithm up to
quadratic order in [ε, W ]/� and (∂t W )/�. Terms linear in W vanish at critical
points of the effective action; W-independent terms are omitted. We are then left
with

� ln det(DW) = −1

4
Tr
(
�−1([ε, W ] + (∂t W ))�−1([ε, W ] + (∂t W ))

)+ h.o. ,

(4.29)
where h.o. stands for terms of higher order in |ε|/W0 or |∂t W |/W0. Next, we pull
�−1 through [ε, W ] + ∂t W using the identity

[�−1, [ε, W ] + (∂t W )] = −�−1[�, [ε, W ] + (∂t W )]�−1 , (4.30)

which shows that the commutator only contributes higher-order terms to (4.29).
Mixed terms with one spatial and one time derivative of W do not contribute to
the trace. We thus arrive at

� ln det(DW) = −1

4
Tr(�−2([ε, W ]2 + (∂t W )2)) + h.o. . (4.31)
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Comparison with (4.21) then yields an expression for C∇ ,

C∇ = W 2
0

8(2π )3

∫

B�

dk|∇ε(k)|2 1

β

×
∑

k0

1

((−ik0 + ε(k))2 − W 2
0 /4)2

βW0→∞−→ 1

4(2π )3W0

∫

B�

dk|∇ε(k)|2 ,

which is positive. Thus the real part of the σ -model action (4.21) for the Hubbard-
model exhibits its maximum (w.r.t. time-independent exchange fields) on config-
urations for which

∫ β

0
dt
∑

x

|∇Ŵ(x, t)|2

is maximal, and this is the case for a Néel ordered (staggered) exchange field.
From (4.31) we can also read off the Ct -coefficient in (4.21) to be given by

Ct = −W 2
0

8

1

β

∑

k0

1

((−ik0 + ε(k))2 − W 2
0 /4)2

βW0→∞−→ − 1

4W0
,

which is manifestly negative. From these calculations and the mean field Eq. (4.17)
we conclude that the Hubbard model at half filling exhibits a stable antiferromag-
netic phase if the temperature is sufficiently low. Note that, for a one-band Hubbard
model with ε∗/U0 small enough, where ε∗ = maxk |ε(k)|, our perturbative calcu-
lation of the coefficients (Ct , C∇, CW Z ) of the leading terms in the effective action
of the Weiss exchange field is meaningful beyond the mean-field approximation.
It can be improved systematically.

4.5. Linear Stability of the Ferromagnetic Mean-Field Solution

In this subsection we analyze conditions that imply stability of ferromag-
netically ordered states of the exchange field. In the Hubbard model, we expect
ferromagnetism to prevail when the band is less than half-filled and fairly flat.
This expectation agrees with ones based on alternative approximations; see e.g.
Ref. 30. Since there is no energy gap at the Fermi surface, the operator � defined
in (4.28) has zeros, and the perturbative expansion of the last subsection breaks
down for a less than half-filled band. We therefore have to resort to a linear stability
analysis around a ferromagnetically ordered mean exchange field. We will see that
the stability of the ferromagnetically ordered exchange field configuration is due
to contributions close to the Fermi surface.

The stability of a ferromagnetically ordered exchange field w.r.t.
x-independent fluctuations can be shown quite easily, since the operator DW

is diagonal in momentum space when W(x, t) ≡ W(t) is x-independent. We can
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then write

lim
�↗�

1

|�| ln det(DW) =
∫

B�

dp

(2π )3
ln det

(
∂t + ε(p) + W(t)

2
· σ

)
. (4.32)

In the operator formalism outlined at the beginning of Sec. 3,

det

(
∂t + ε(p) + W(t)

2
· σ

)
= const × Tr

C
4Uε,W(β, 0) ,

where

∂tUε,W(t, s) = hε,W (t) Uε,W(t, s) , (4.33)

Uε,W(t, t) = 14 , (4.34)

and

hε,W (t) =

⎛

⎜⎜⎜⎝

0 0 0 0

0 ε(p)12 + W(t)
2 · σ 0

0 0

0 0 0 2ε(p)

⎞

⎟⎟⎟⎠ .

The trace of the propagator Uε,W(β, 0) is

TrC4Uε,W(β, 0) = 1 + e−βε(p) (TrC4Uε=0,W(β, 0) − 2) + e−2βε(p) . (4.35)

Using the Hölder-inequality for traces (see e.g. Ref. 21), we find that
⏐⏐TrC4 (U0,W(β, 0))

⏐⏐ ≤ TrC4

(
U0,W=W0·n(β, 0)

)
, (4.36)

for an arbitrary constant unit vector n. From this inequality we can conclude,
that x-independent fluctuations of an exchange field of constant length around a
ferromagnetic mean-field configuration do not decrease the free energy and hence
are not a source of instability.

Since the calculation is rather easy, we give an explicit formula for the
coefficient Ct in the action of the magnetic σ -model, for configurations of the
exchange field close to a constant one (ferromagnetic ordering). Because of
the stability of the ferromagnetic state against x-independent fluctuations we must
find a negative sign for this coefficient. We use the Hölder inequality (4.36), in
order to get an upper bound for the large-β behaviour of the trace in (4.35) and
find that, for large β, and up to a W-independent constant,

Seff (W) ≈ (V −
F − V +

F ) ln det(∂t + W ) + SK (W) , (4.37)

where V ±
F = Vol{p|ε(p) ± W0/2 < 0}. In order to calculate Ct , we take a look at

the real part of ln det(∂t + W ),

� ln det (∂t + W ) = 1

2
ln det [(∂t + W ) (−∂t + W )] = 1

2
ln det (� + (∂t W )) ,
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where � := −∂2
t + (1/4)W 2

0 . We treat (∂t W ) as a perturbation of � and proceed
in the same way as in the last subsection to arrive at

� ln det (∂t + W ) = −1

4
tr(�−2(∂t W )2) + h.o. ,

where we omit W-independent terms. This yields the result

Ct = −W 2
0 (V −

F − V +
F )

8(2π )3β

∑

k0

1
(
k2

0 + W 2
0 /4

)2

βW0→∞−→ − V −
F − V +

F

4(2π )3W0
, (4.38)

which is indeed manifestly negative.
Next, we investigate the stability of a ferromagnetically ordered mean-

field configuration w.r.t. time-independent, but x-dependent perturbations, which
amounts to the calculation of the coefficient C∇ in the action of the magnetic
σ -model. This calculation is somewhat subtle. We perturb the ferromagnetic
mean-field configuration W = W0nz by time-independent fluctuations, χ , and
calculate their contribution to the real part of the effective action to second order
in |χ |/W0. Since the effective action has a quadratic minimum w.r.t. the length
of the exchange field, we can assume χ to be orthogonal to nz . Then (omitting
χ -independent terms)

�Seff (W0nz + χ) = −1

2

∑

x,y

χT (x )K (x − y)χ (y) − 1

4
tr
(
�−1{ε, χ}�−1

× {ε, χ}) + h.o. , (4.39)

where

� = −∂2
t + ε2 + W 2

0

4
+ W0εσ3 ,

χ = 1

2
χ · σ .

In the second term, we only keep contributions quadratic in |p|/W0, where p is
the momentum labelling the modes of χ (derivative expansion). Spin degrees of
freedom and Matsubara frequencies can be summed over explicitly, and - after a
straightforward but tedious calculation—we obtain a formula for the coefficient,
C∇ , of the term

β

W 2
0

∑

x

|∇χ (x)|2
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appearing in the expansion of the second term on the R.S. of (4.39). For large
values of β, it is given by

C∇ ≈ (2π )−3
∫

B�

dk
|∇ε(k)|2

4W0

×
{

− �

(
ε(k) − W0

2

)
βW0

4

1

cosh β
(
ε(k) − W0

2

)+ 1

+�

(
W0

2
− |ε(k)|

)[
1 − βW0

4

(
1

cosh β
(
ε(k) + W0

2

)+ 1

+ 1

cosh β
(
ε(k) − W0

2

)+ 1

)]

−�

(
−ε(k) − W0

2

)
βW0

4

1

cosh β
(
ε(k) + W0

2

)+ 1

}
. (4.40)

By plugging the ansatz W = W0nz + χ , with χ orthogonal to nz , into the σ -model
action (4.21), one easily sees that the coefficient C∇ just calculated coincides with
the corresponding coefficient in the σ -model action.

For the Hubbard model, we can deduce sufficient conditions for the linear
stability of the ferromagnetic mean-field configuration (i.e., for C∇ to be negative)
from (4.40), for large values of βW0. To get a rough idea of a sufficient condition
for C∇ to be negative, we approximate the Fermi surfaces of the spin-up and
spin-down bands by spheres. We denote by v±

F the Fermi velocities and by k±
F the

Fermi momenta of the spin-up and spin-down bands, respectively, with

|∇ε(k±
F )| = v±

F ,

by A±
F the areas of the Fermi surfaces of the spin-up and spin-down bands, re-

spectively, and by V ±
F the respective volumes. Then, for large values of βW0, a

sufficient condition for linear stability can be read off from (4.40):

W0

2
(A+

Fv+
F + A−

Fv−
F ) > v2

max(V −
F − V +

F ) , (4.41)

where vmax = max{|∇ε(k)| |ε(k) − W0/2 < 0 < ε(k) + W0/2}. For weak fillings

ε(k) ≈ δ|k|2 − µ (4.42)

is a good approximation of ε for wave vectors, k, corresponding to occupied states
(with spin down). The stability condition (4.41) can then be expressed in terms of
the parameters W0, µ and δ. The parameters W0 and δ are supposed to be positive,
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whereas µ can take negative values, too. From the equations

ε(k±
F ) ± W0

2
= 0 (4.43)

and (4.42) we get

vmax = v−
F ,

v±
F = 2δk±

F = 2
√

δ(µ ∓ W0/2) ,

A±
F = 4π (k±

F )2 ,

V ±
F = 4π

3
(k±

F )3 .

We thus arrive at the following conditions for linear stability of ferromagnetic
mean-field configurations (C∇ < 0).

The existence of a Fermi surface, Eq. (4.43), yields the bound

W0 ≤ c1δ − µ , (4.44)

where c1 is a positive numerical constant of O(1). Next, a sufficient condition for
inequality (4.41) to hold, is given by

W0 ≥ c2µ , (4.45)

for a positive numerical constant c2 of O(1). From (4.44) and (4.45) we get the
condition for the band:

µ ≤ c3δ , (4.46)

where c3 is a numerical constant of O(1).
In the regime defined by (4.44) and (4.45), the dimensionless coefficient βC∇

is of the order

|βC∇| ≈ β A−
Fv−

F ≈ βδ−1/2W 3/2
0 = βW0(W0/δ)1/2 ,

from which we see that a flat band and large values of the exchange field W0 favour
stability of the ferromagnetic state.

The mean-field Eq. (4.7) for the one-band Hubbard model,

W0 = 2U0

3

V −
F − V +

F

(2π )3
, (4.47)

and inequalities (4.44) and (4.45) can be simultaneously fulfilled if the on-site
repulsion U0 is chosen appropriately (depending on µ and δ). Hence, at low
temperatures, for small δ and an appropriate choice of µ and U0, the less than
half-filled one-band Hubbard model has quadratically stable ferromagnetic mean-
field solutions.

Details of these and other related calculations will appear in Ref. 18.
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4.6. Magnon Dynamics and the W Z-Term

In this subsection we consider the Wess-Zumino-term in (4.21). We first
consider an x-independent exchange field W(t) of constant length |W(t)| = W0

and calculate the variation of the first term on the R.S. of (3.40) for ε = 0, given
a variation, δW, of the exchange field:

δ ln det(D0,W) = tr(δD0,W(D∗
0,W D0,W)−1 D∗

0,W) , (4.48)

where

δD0,W = 1

2
δW(t) · σ ≡ δW (t) .

In order to evaluate the R.S. of (4.48), we expand (D∗
0,W D0,W)−1 in a Neumann

series in powers of (∂t W ),

(D∗
0,W D0,W)−1 = �−1 + �−1(∂t W )�−1 + . . . ,

where � = −∂2
t + (1/4)W 2

0 . Plugging this series into (4.48), we find that

δ ln det(D0,W) = δS(1)(W) + δS(2)(W) + . . . . (4.49)

where

δS(1)(W) = tr(δW�−1 D∗
0,W) , (4.50)

δS(2)(W) = tr(δW�−1(∂t W )�−1 D∗
0,W) , (4.51)

etc.. Using the cyclicity of the trace and the fact that Tr(σ ) =0 (where “tr” is the
trace on 2 × 2 matrices), we see that

δS(1)(W) = α(W0)
∫ β

0
dtTr(W (t)δW (t)) ,

where

α(W0) = β−1
∑

k0∈Zβ

1

k2
0 + (1/4)W 2

0

,

and Zβ = (π/β)(2Z + 1). Since

Tr(W (t)δW (t)) = 1

2
δTr(W (t)2) ,

δS(1) only depends on variations of the length of W(t) and vanishes if the length
is held fixed. By (4.51),

δS(2)(W) = δS(2)
I (W) + δS(2)

I I (W) ,
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where

δS(2)
I (W) = −tr(δW�−1(∂t W )�−1∂t ) = −1

2

3∑

j=1

tr(δW j�
−1(∂t W ) j�

−1∂t )

and

δS(2)
I I (W) = tr(δW�−1(∂t W )�−1W ) = − i

4

∑

j,l,m

ε jlm tr(δW j�
−1(∂t W )l�

−1Wm) .

Here we have used that tr(σ jσl) = 2δ jl and tr(σ jσlσm) = −2iε jlm . Since ∂t , �

and W j (t) are real operators, δS(2)
I is real and δS(2)

I I purely imaginary. The real

part has been calculated in the last subsection. Turning to δS(2)
I I (W), we observe

that

δS(2)
I I (W) = tr(WδW (∂t W )�−2) + higher derivative terms

= − i

4
γ (W0)

∫ β

0
dt
∑

j,l,m

ε jlm W j (t)δWl(t)∂t Wm(t) + h.d.t.

= − i

2

∫ β

0
dtŴ(t) · (δŴ(t) ∧ ∂t Ŵ(t)) + O((βW0)−1) + h.d.t. ,

(4.52)

where, in the last equation, we have used that

γ (W0) := β−1
∑

k0∈Zβ

1

(k2
0 + (1/4)W 2

0 )2
−→

βW0→∞
2

W 3
0

. (4.53)

We note that h.d.t. ∼ O((βW0)−1).
Recall that W(t) has periodic boundary conditions at t = 0, β. Viewing the

imaginary-time circle [0, β) as the equator of a sphere S2
β of radius β/(2π ), we

may extend the unit-vector field Ŵ(t) from the equator of S2
β to a continuous

unit-vector field Ŵ(t, s), 0 ≤ s ≤ β/2, on the entire sphere in an arbitrary way,
but with Ŵ(t, β/4) = Ŵ(t). The first term on the R.S. of (4.52) then turns out to
be the variation of the functional

SW Z (W) = − i

2

∫ β

0
dt

∫ β/4

0
dsŴ(t, s) · (∂sŴ(t, s) ∧ ∂t Ŵ(t, s))

= − i

2

∫

S2,N

Ŵ · (dŴ ∧ dŴ) , (4.54)

where “d” denotes the exterior derivative, and S2,N is the northern hemisphere of
S2. We recognize (4.54) to be the Wess-Zumino term in (4.21) for an x-independent
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(i.e., ferromagnetically ordered) exchange field. The corresponding coefficient
CW Z depends on ε and will be determined later on. The R.S. of (4.54) is expressed
in standard differential-form notation, which makes it manifest that SW Z (W) is
independent of the radius, β/2π , of the sphere.

The leading term on the R.S. of (4.52) is also the variation of

S′
W Z (W) = i

2

∫

S2,S

Ŵ · (dŴ ∧ dŴ) ,

where S2,S is the southern hemisphere of S2. One observes that

SW Z (W) − S′
W Z (W) = − i

2

∫

S2

Ŵ · (dŴ ∧ dŴ) = 2π in , (4.55)

where n = n(Ŵ) ∈ Z is the degree of the map Ŵ : S2 → S2. It follows that,
apparently, the Wess-Zumino action SW Z is only determined modulo an integer
multiple of 2π i . Due to (4.55), exp(SW Z (W)) is a single-valued functional of W.

If the exchange field W(x, t) is antiferromagnetically ordered, i.e., the Néel
field

N(x, t) ≡ (−1)|x |W(x, t) = W0n

is a constant field pointing in the direction of some unit vector n, the Wess-Zumino
term in (4.21) tends to 0 in the scaling limit. It follows that, in antiferromagnetically
ordered states, at sufficiently low temperatures, there are gapless Goldstone bosons
with dispersion

ω(k) ≈ v|k| , (|k| ≈ 0) , (4.56)

for some velocity v.
In ferromagnetically ordered states, however, the Wess-Zumino term sur-

vives. Using (4.37) and (4.54), the coefficient CW Z in (4.21) is found to be

CW Z = − i

2

(V −
F − V +

F )

(2π )3
, (4.57)

in the limit where βW0 → ∞. Had we normalized the Fourier modes and were we
in a finite volume, we would find that exp(S̃eff (W)) is single-valued. From (4.21)
we derive the equation of motion

CW Z Ŵx ∧ ˙̂Wx =
∑

y

K̃ (x − y)Ŵy + αŴx , (4.58)

with Ŵx (t) = Ŵ(x, t), ˙̂Wx = ∂t Ŵx , where K̃ (x − y) = W 2
0 K (x − y) +

C∇δ|x−y|,1, and where α is a Lagrange multiplier arising from the constraint
|Ŵx (t)|2 = 1, for all x and all t . Taking the vector product of (4.58) with Ŵx , and
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doing the Wick rotation from imaginary time back to real time,(28) we obtain the
equation of motion for magnons in a ferromagnet

iCW Z
˙̂Wx = Ŵx ∧

∑

y

K̃ (x − y)Ŵy , (4.59)

which is the well known Landau-Lifshitz equation; see also Ref. 19.
If J , and hence K , are of short range and if the equilibrium state of the system

were ferromagnetically ordered, i.e.,

W(x, t) = W0n + χ (x, t) , W0 > 0 ,

where n is a unit vector and χ (x, t) is assumed to be small, then the dispersion of
magnons is found to be

ω(k) = |k|2
2M

, for some constant M > 0 ,

as expected. If n points in the z-direction then χ lies essentially in the x − y plane.
We define

φ(x, t) = χ1(x, t) + iχ2(x, t) .

Passing to the formal continuum limit, the action functional for the complex
magnon field φ of a ferromagnet is seen to be given by

Smagnon(φ̄, φ) =
∫ β

0
dt

∫
dx

[
φ̄(x, t)∂tφ(x, t) + 1

2M
φ̄(x, t)(�φ)(x, t)

]
,

(4.60)
which is the action for a system of conserved non-relativistic bosons with van-
ishing chemical potential. Since W1 = χ1 = (φ + φ̄)/2 is an observable field, the
chemical potential actually necessarily vanishes, and there is no “magnon conden-
sation”; (just like photons cannot form any Bose condensates).

4.7. Absence of Symmetry Breaking in One and Two Dimensions

at Positive Temperatures

For β < ∞, we can study the fluctuations of the modes W(k0, k) of the
exchange field with k0 = 0, i.e., of

∫ β

0 W(x, t)dt .
We set

∫ β

0
W(x, t)dt = β(Wm f + χl(x)nz + χ t (x )) ,
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where Wm f is a solution of the ferromagnetic or the antiferromagnetic mean-field
equation. Then, in d spatial dimensions, we conclude from our stability analysis

〈χ t (x )2〉β,µ ∝
∫

B�

ddk
k2

which, for d = 1 and 2, is infrared-divergent. Thus, transversal fluctuations around
the mean field are gigantic and hence destroy long-range order; (this is the Mermin-
Wagner theorem, see, e.g., Ref. 6).

In two dimensions, there is an alternative way to understand the absence
of ordering when β < ∞: Setting W(x, t) = W̃(x) (ferromagnetic short-range
order), or W(x, t) = (−1)|x |W̃(x) (antiferromagnetic short-range order), where
W̃(x) is slowly varying, and passing to the formal continuum limit (lattice spacing
→ 0), one finds that the action Seff (W) has (approximate) critical points, indeed
local maxima, on time-independent configurations W̃(x) with the properties:

|W̃(x)| ≈ W0 , for all x ,

where W0 is a solution of the (ferromagnetic or antiferromagnetic) mean-field
equation,

W̃(x) → W0n , as |x | → ∞ ,

where n is an arbitrary unit vector, and the degree of the map W̃(x), as measured
by the integer (“winding number”)

1

4πW 3
0

∫
d2xW̃(x) ·

(
∂W̃(x)

∂x1
∧ ∂W̃(x)

∂x2

)
,

is non-zero. Such configurations are called “instantons.” The contributions of
instanton configurations to a functional integral, such as (3.43), destroy long-
range order.

Remark: Generally speaking, it is hard to justify the use of steepest descent in
approximately evaluating functional integrals, such as (3.41) and (3.43), because
there isn’t any large constant N = h−1 multiplying Seff (W). If, however, we place
N identical species of spin- 1

2 -fermions on each site x ∈ �, coupled to each other
only through exchange interactions between the total spin operators, and if we
set K = N K0 then Seff (W) ≡ S(K0)

eff (W) is replaced by N S(K0)
eff (W), and steepest

descent becomes reliable.

5. REFLECTION POSITIVITY AND PHASE TRANSITIONS

IN HEISENBERG-MODELS

In order to establish the existence of phase transitions in some of the models
introduced in Sec. 3, we recall the method of reflection positivity(4,5,20,21). For
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simplicity, we choose the lattice � to be given by Z
d . We decompose � into two

equal halves

�+ = {x ∈ �|x1 > 0}, �− = {x ∈ �|x1 ≤ 0}, (5.1)

where x j is the j th component of x ∈ �. Let � be the plane in R
d orthogonal to

the 1-direction at height x1 = 1
2 , and let ϑ denote reflection at �. Clearly, ϑ maps

�− onto �+, and conversely.
An exchange coupling matrix, J (x, y), is said to be reflection positive iff

∑

x,y

f (x)J (x, ϑy) f (y) ≥ 0, (5.2)

for all functions f on � with supp f ⊆ �+. Note that this condition is independent
of the diagonal elements, J (x, x), of J ; so, by choosing them appropriately, we
can always ensure that J is either positive-definite or negative-definite. By com-
puting some integrals with a Gaussian measure of mean 0 and covariance −J−1

(J negative-definite) we see that if J is reflection positive then so is −J−1; see
e.g. Refs. 20, 21. Furthermore, if J is reflection-positive then so is − J̃ , where J̃
is given by

J̃ (x, y) = (−1)|x+y| J (x, y) = (−1)|x |+|y| J (x, y) (5.3)

with |x | = ∑d
j=1 x j . (Note that if J is positive-definite then J̃ is positive-definite,

too.) The following simple calculation proves our claim. Let

f̃ (x) = (−1)|x | f (x) , supp f ⊆ �+ .

Since J is assumed to be reflection-positive,

0 ≤
∑

x,y

f̃ (x)J (x, ϑy) f̃ (y)

=
∑

x,y

f (x)(−1)|x |+|y| J (x, ϑy) f (y)

= −
∑

x,y

f (x)(−1)|x+ϑy| J (x, ϑy) f (y)

= −
∑

x,y

f (x) J̃ (x, ϑy) f (y), (5.4)

for an arbitrary function f with supp f ⊆ �+ (hence supp f̃ ⊆ �+). These con-
siderations are summarized as follows:

4.14If J is reflection-positive then −K := −J−1 is reflection-positive, too;
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and

if −J is reflection-positive (i.e., J is reflection-negative)

then −K̃ := − J̃−1 is reflection-positive, too. (5.5)

In both situations, we can choose the diagonal elements of J such that J and K
are positive-, or negative-definite.

A reflection-positive matrix J is called ferromagnetic, while a reflection-
negative matrix is called antiferromagnetic. It is easy to see that, for nearest-
neighbour exchange couplings, these notions of “ferro-” and “antiferromagnetic”
coincide with the familiar ones.

Let J be ferromagnetic and negative-definite. Then the Gaussian measure

dµ−J ( �φ) = const · e
1
2

∑
x,y

�φ(x)J (x,y) �φ(y)
∏

x

dnφ(x),

where �φ(x) ∈ R
n, n = 1, 2, 3, . . . , and the constant is chosen such that dµ−J is

normalized, is reflection-positive, in the sense that
∫

dµ−J (φ)(�F)(φ)F(φ) ≥ 0, (5.6)

for an arbitrary bounded function F that depends only on the variables { �φ(x)|x ∈
�+}; the space of all such functions is denoted by F+. The function �F in (5.6)
is defined by

(�F)(φ) = F(φϑ ), (5.7)

where φϑ (x) = φ(ϑx). If φ(1), . . . , φ(l) are independent Gaussian random fields
with distributions given by dµ−J (t) (φ(t)), where J (t) is ferromagnetic and J (t) <

0, t = 1, . . . , l, then the distribution

dµ(φ) =
l∏

t=1

dµ−τ (t) J (t) (φ(t)) (5.8)

of the random field φ given by

φ(x, t) = φ(t)(x), t = 1, . . . , l,

is reflection-positive, for arbitrary τ (t) > 0, t = 1, . . . , l; as is easily seen.
These considerations have the following consequence that will play a cru-

cial role in our analysis of phase transitions: Let W(x, t), x ∈ �, t ∈ [0, β),
with W(x, t + β) = W(x, t), be the imaginary time exchange field, and let
dµK (W) = exp(SK (W))DW be its Gaussian distribution, as introduced in Sec. 3,
(3.27) through (3.31). If the exchange couplings J are ferromagnetic (in the sense
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specified above) and positive-definite then −K = −J−1 is ferromagnetic and
negative-definite; hence the Gaussian measure

dµK (W) is reflection-positive, (5.9)

as follows from (3.29), (5.6) and (5.8).
Next, we suppose that the exchange couplings J are antiferromagnetic (in

the sense specified above). Then, by (5.5), −K̃ = − J̃−1 is reflection-positive and
negative-definite, for J positive-definite. We introduce a random field, N, (“N” for
“Néel”), by setting

N(x, t) = (−1)|x |W(x, t). (5.10)

If W has distribution dµK (W), with K = J−1, then N has distribution dµK̃ (N),
and hence

dµK̃ (N) is reflection-positive. (5.11)

We set

Nϑ (x, t) = N(ϑx, t), (5.12)

and (see (5.7))

(�F)(N) = F(Nϑ ), (5.13)

for an arbitrary function F of {N(x, t)|x ∈ �, t ∈ [0, β)}.
We consider the models introduced in Sec. 3 without hopping term but with

N Fermion species. They have an action functional given by

S̄(C̄, C ; W) =
N∑

a=1

∫ β

0
dt
∑

x

[
C̄ (a)

s (x, t)

(
∂

∂t
− µ

)
C (a)

s (x, t)νaW(x, t)

× S(a)(x, t)

]
− 1

2

∫ β

0
dt

(
∑

x,y

W(x, t)K (x − y)W(y, t)

)
,

(5.14)

where νa = ±1, for all a = 1, . . . ,N , and K̂ (k) =
(

4
3U0 + Ĵ�=(k)

)−1
; see (3.20),

(3.29), and (3.32) through (3.34). Since the first term on the R.S. of (5.14) does
not couple different sites in the lattice, the effective action of the exchange field
W, see (3.36) and (3.40), is given by

Seff (W) = −1

2

∫ β

0
dt

(
∑

x,y

W(x, t)K (x − y)W(y, t)

)
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+
∑

a

∑

x

ln det
(
DνaW(x,·)

)
, (5.15)

with DW given in (3.38), for t̂(x) ≡ 0. We define

fx (N) =
N∏

a=1

det
(
Dνa (−1)|x |N(x,·)

)

=
N∏

a=1

det
(
DνaW(x,·)

)
,

(5.16)

Then it follows that

� fx (N) = fx (Nϑ (x, ·))

=
N∏

a=1

det
(
Dνa (−1)|x |Nϑ (x,·)

)

=
N∏

a=1

det
(
D−νa (−1)|ϑx |N(ϑx,·)

)

=
N∏

a=1

det
(
Dνa (−1)|ϑx |N(ϑx,·)

)

= fϑx (N),

(5.17)

where, in the third equation, we have used that (−1)|x | = −(−1)|ϑx |, and, in the
fourth equation, we have inserted identity (4.27). Equation (5.17) implies that

�
( ∏

x∈�+

fx (N)
)

=
∏

x∈�−

fx (N). (5.18)

From this equation and Eqs. (5.11) and (5.6) we conclude the following simple,
but quite fundamental

Result A Suppose the exchange couplings J are antiferromagnetic (in the
sense introduced above) and positive-definite. We set

dµeff (N) = const ·∏
x

fx (N)dµK̃ (N) (5.19)

= const′ · exp(Seff (N))DN, (5.20)

where the constants are chosen such that
∫

dµeff (N) = 1, and

Seff (N) := − 1

2

∫ b

0
dt

(
∑

x,y

N(x, t)K̃ (x − y)N(y, t)

)
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+
∑

a

∑

x

ln det
(
Dνa (−1)|x |N(x,·)

)
, (5.21)

with K̃ = J̃−1; see (5.10), (5.11), (5.15).

Then the measure dµeff (N) is reflection-positive, in the sense that
∫

dµeff (N)(�F)(N)F(N) ≥ 0, (5.22)

for arbitrary functions F ∈ F+ (where F+ is defined right above (5.7)).

Next, we suppose that the number of fermion species, N = 2M is even, with

ν1 = . . . = νM = 1, νM+1 = . . . = ν2M = −1. (5.23)

We define

gx (W) = det(DW(x,·))M det(D−W(x,·))M.

Identity (4.27) then implies that gx (W) ≥ 0, for all x ∈ �, and, setting

Wϑ (x, t) = W(ϑx, t),

we find that

�gx (W) = �gx (W) = gϑx (W). (5.24)

Defining

dµeff (W) = const ·
∏

x

gx (W)dµK (W) (5.25)

= const′ · exp
(

Seff (W)
)
DW, (5.26)

where K = J−1, Seff (W) is as in (5.15), and the constants are chosen such that∫
dµeff (W) = 1, we arrive at

Result F Suppose the exchange couplings J are ferromagnetic (in the
sense introduced above) and assumption (5.23) holds. Then the measure dµeff (W)
is reflection-positive, i.e.

∫
dµeff (W)(�F)(W)F(W) ≥ 0, (5.27)

for arbitrary functions F ∈ F+.

From Results A and F one obtains the following infrared (spin-wave) bounds,
originally discovered in Ref. 5 and generalized in Refs. 20, 21.
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(IRA) Under the hypotheses of Result A (in particular, J antiferromagnetic), one
has the inequalities

0 ≤ 〈N̂(k, k0) · N̂(−k,−k0)〉β,µ

≤ W 2
0 δ0(k)δk0,0 + β−1

(̂̃K (k) − ̂̃K (0)
)−1 (5.28)

for some constant W 2
0 ≥ 0. Note that N̂(−k,−k0) = N̂(k, k0), because N(x, t) is

real.
If W 2

0 is strictly positive then the state 〈(·)〉β,µ exhibits long-range order, and
if we couple N to an arbitrarily small external field, εn, |n| = 1, then

lim
ε→0

〈N(x, t)〉β,µ,εn = W0n.7 (5.29)

Inequality (5.28) implies that, for an arbitrary bounded function f (x, t) of rapid
decay in x ∈ � and periodic in t ∈ [0, β),

0 ≤ 〈|N( f )|2〉β,µ

≤ β2W 2
0 | f̂ (0, 0)|2 + β

∑

k0∈ 2π
β

Z

∫

B�

dk
| f̂ (k, k0)|2
̂̃K (k) − ̂̃K (0)

, (5.30)

where N( f ) = ∫ β

0 dt
∑
x

N(x, t) f (x, t).

Returning to identities (3.42) and (3.43), with

S(x, t) =
N∑

a=1

νaS(a)(x, t), (5.31)

and recalling that W(x, t) = (−1)|x |N(x, t), we conclude from (5.30) that

0 ≤ 〈(
∫ β

0
S(0, t)dt)2〉β,µ (5.32)

≤ −β K̃ (0) + β2W 2
0
̂̃K (0)2 + β

∫

B�

dk
̂̃K (k)2

̂̃K (k) − ̂̃K (0)
. (5.33)

Recalling that K̃ = J̃−1, this inequality is seen to imply that

0 ≤ (S(0), S(0))β,µ ≤
∫

B�

dk
ˆ̃J (0) − ˆ̃J (k)

+ βM2 , (5.34)

7 This claim is heuristic, but can be replaced by an equivalent, mathematically rigorous one.(20)
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where (S(0), S(0))β,µ is the Duhamel two-point function

(S(0), S(0))β,µ =
∫ β

0
〈S(0, 0) · S(0, t)〉β,µdt , (5.35)

and

M = W0
̂̃K (0)

is the spontaneous magnetization. Inequality (5.34) reproduces the infrared bounds

in Ref. 4. For short-range exchange couplings, 0 ≤ ˆ̃J (0) − ˆ̃J (k) ≤ const|k|2.
Then, in dimension d ≥ 3, and for N ≥ 1 Fermion species of spin s ≥ 1/2,
inequality (5.34) combined with an elementary lower bound on (S(0), S(0))β,µ,
due to Bruch and Falk, shows that, for large β (µ = 0),

M > 0 .

See Ref. 4 for details.
Hence, by (3.42) and (5.29), and under the above assumptions on J, d,N

and s,

lim
ε→0

〈S(x, 0)〉β,µ,εn = −
∑

y

K (x − y) lim
ε→0

〈W(y, 0)〉β,µ,εn

= −(−1)|x |∑

y

K̃ (x − y) lim
ε→0

〈N(y, 0)〉β,µ,εn

= −(−1)|x |Mn �= 0, (5.36)

i.e., the system exhibits Néel order for sufficiently large values of β.
Arguments related to those used in the proof of the Mermin-Wagner theorem

(see Ref. 6) show that if M > 0 then there are gapless spin waves (see e.g. Ref. 31),
in accordance with the mean-field picture of Section 4.

Next, we exploit Result F. It implies that, under condition (5.23), the
following infrared bounds hold.

(IRF) Under the hypotheses of Result F (in particular, J ferromagnetic
and (5.23) holds), the inequalities

0 ≤ 〈Ŵ(k, k0) · Ŵ(−k,−k0)〉β,µ

≤ W 2
0 δ0(k)δk0,0 + β−1

(
K̂ (k) − K̂ (0)

)−1
(5.37)

for a constant W 2
0 ≥ 0, are valid. (See Refs. 5, 20, 21). The consequences of these

inequalities are perfectly analogous to those discussed for antiferromagnets above.
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We set

S(x, t) =
M∑

a=1

(
S(a)(x, t) − S(a+M)(x, t)

)
, (5.38)

see (5.23). Then, under appropriate conditions on U0, µ and K −1(0) = J (0), and
for d ≥ 3,

M = lim
ε→0

〈S(x, t)〉β,µ,εn = −K̂ (0)W0n �= 0 (5.39)

for β and M large enough, which proves long-range order at low temperatures, for
M large enough; (presumably N = 2M = 2 suffices if J is nearest-neighbour
and d ≥ 3).

Unfortunately, there is, as yet, no such result on the existence of a phase
transition in a quantum Heisenberg ferromagnet with only one species of fermions
(electrons), i.e., N = 1. The reason is that this model is not described by a
reflection-positive distribution, dµeff (W), for the exchange field W. Setting

fx (W) = det(DW(x,·)), (5.40)

dµeff is given by

dµeff (W) = const ·
∏

x

fx (W)dµK (W). (5.41)

Now, if J is ferromagnetic dµK (W) is reflection-positive if we set Wϑ (x, t) =
W(ϑx, t). However, using (4.27),

� fx (W) = det(DW(ϑx,·))
= det(D−W(ϑx,·))
= fϑx (−W) �= fϑx (W).

Thus, dµeff (W), as given in (5.41), is not reflection-positive, and there is therefore
no reason why the Infrared Bounds (IRF) should hold. A very similar problem
is encountered in the study of Bose-Einstein condensation in lattice models of
non-relativistic, interacting bosons.

In order to get some preliminary insights into phase transitions for the Heisen-
berg ferromagnet, one may consider the following “static approximation”: one
replaces fx (W) by

f (0)
x (W) = det(DW(0)(x)), (5.42)

where

W(0)(x) = 1

β

∫ β

0
dt W(x, t)

(
= 1

β
W(x, k0 = 0)

)
,
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which is time-independent. Then

� f (0)
x (W) = f (0)

ϑx (−W) = f (0)
ϑx (W), (5.43)

as is easily checked, and f (0)
x (W) > 0. Replacing dµeff (W) by

dµ
(0)
eff (W) =

∏

x

f (0)
x (W)dµK (W),

we conclude that dµ
(0)
eff (W) is reflection-positive if J is ferromagnetic, hence the

infrared bounds (5.37) hold, and we conclude that, in the static approximation,
for appropriate choices of U0, µ and J (0), a phase transition accompanied by
continuous symmetry breaking occurs at sufficiently low temperatures.

If one replaces electrons with spin 1
2 by fermions with spin s, or by 2s identical

species of spin- 1
2 fermions (with νa = 1, for all a = 1, . . . , 2s), and if one then

takes s → ∞ (rescaling the spin operators, S(x, t) �→ 1
s S(x, t)) then the static

approximation becomes exact. This is not surprising, because the limit s → ∞
corresponds to the classical limit, as shown in Ref. 32, and the spin-s Heisenberg
model approaches the classical Heisenberg model for which the existence of a
phase transition has been established in Ref. 5. Our formalism, involving the
exchange field W, offers a neat and simple way of recovering some of the results
in Ref. 32; (we leave this as an exercise to the reader).

Remarks:

1. We have outlined a proof of existence of a phase transition for a class of
Heisenberg antiferromagnets; (the proof is mathematically rigorous; some
missing details can be inferred from Refs. 4, 5. Of course, this is not a
surprise. In Ref. 4, Dyson, Lieb and Simon have already proven a similar
result also using reflection positivity (albeit in a different manner). Their
method of proof, too, breaks down for quantum ferromagnets.

2. It appears that to understand phase transitions in quantum ferromagnets
and the related phenomenon of Bose-Einstein condensation for lattice
gases of non-relativistic bosons in a mathematically rigorous way, we
would have to resort to a full-fledged renormalization group analysis-a
technically rather demanding task.

3. The fact that the function fx (W) defined in (5.40) (see also (5.19)) is
neither positive, nor even real is the origin of the “sign (complex phase)
problem” in numerical simulations of quantum ferro- and antiferromag-
nets involving, e.g., the Monte Carlo method applied to (5.41). The great
quality of methods based on reflection positivity is that they are applicable
to the analysis of certain complex distributions dµeff .
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4. If one considers models in d dimensions with SO(2n) spins, n =
1, 2, 3, . . ., then for d ≥ 3 one can prove a ferromagnetic phase transi-
tion, using arguments very similar to those described above.
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